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Physics Goals of MINOS

Main Injector Neutrino Oscillation Search

The primary function of the MINOS experiment is to study neutrino
oscillations at the atmospheric mass-squared splitting

/Weak Eigenstates Mass Eigenstates \
v, Vsl
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Mass eigenstates are a linear combination of weak states
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Oscillations at the Atmospheric Splitting

P(v.—v) =0,
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A v of one flavor will become a superposition of other flavors as it propagates

/~ Mass Eigenstates
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vl [, o !
| Amzatm| ~ 243 x 103eV2 eFor E/L ~ Amzatm terms with that
mass term dominate the probability
(Y i m— i 4
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For one mass scale dominance
P(va—WB) = SmB sin’[1.27Am*(L/E)], for a #

S,; term is related to components of the mixing matrix
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Oscillations Studied at MINOS

The following analyses will be covered in this presentation
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Oscillations Studied at MINOS

The following analyses will be covered in this presentation
2 v —v_oscillations

@ Study oscillations through the disappearance of v, CC events

@ |dentify v flavor by finding muons from CC interactions
@ Measure:

@ |Am?,)|

@ sin*(26,,)
@ Rule out exotic models:

# Decoherence

# Decay

Neutrino Survival Probability
P(v —v)=1- sin*(20,,)sin*(1.27Am’L/E)
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Oscillations Studied at MINOS

The following analyses will be covered in this presentation
2 v —v_oscillations
@ Study oscillations through the disappearance of VMCC events
@ |dentify v flavor by finding antimuons from CC interactions

@ Measure:
3 |Am232|
@ sin*(260,,)
@ Test of CPT conservation and/or nonstandard interactions
Matter States Antimatter States
Vil Y

atm

A2 Vil 1
I Am?

atm

2N i m— — ) 4 v,
2 2
s | ALY 21 A
1 1

P(v—v)=1- sin?(26,,)sin*(1.27Am*L/E)
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Oscillations Studied at MINOS

The following analyses will be covered in this presentation
2 Sterile neutrinos: v, —v, oscillations
@ |dentify active v by identifying NC interactions

@ Study oscillations through the disappearance of NC events
@ Sensitive to:

af, 0,0,
3 Eigenstates 4 Eigenstates \
m, < m, m, » m,
V. v, = N
v
3 2 Am243
VT- Am?® v
v ARy | se— e - Y
\Y =l v sol Am?
n 1 atm
v, N 2
1= ——u
P(v—v)=0 P(v —v) = C sin*(1.27Am’L/E) P(v—v)=C sin’*(1.27Am’L/E) + C_
C, C,, C are my own shorthand for terms involving the mixing matrig/
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Oscillations Studied at MINOS

The following analyses will be covered in this presentation
2 v —v_oscillations

@ Study oscillations through the appearance of v. CC events

@ |dentify v flavor by finding electrons from CC interactions
@ Sensitive to:
@ sin*(26.,)

@ Ocp
@ 9., is the only unmeasured mixing angle in 3 flavored lepton sector
@ CP violating effects involve 0, terms

V3
Am?
atm

Want to measure this component
A e — s )4
e | Ky
v1

P(v —v) = sin*(0,,)sin*(20,,)sin*(1.27Am’L/E)+*“3  -terms”+“mass hierarchy sensitive terms™+...
All these terms are significant. Matters effects will alter the probability
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How do we study these oscillations?




Long Baseline Accelerator Neutrinos

@ Use a neutrino beam derived from 120 GeV
protons from Fermilab's Main Injector

@ Use 2 functionally identical detectors: Dututn NG

2 A Near Detector at Fermilab to measure
the unoscillated beam composition and the Madison
energy spectrum

2 A Far Detector deep underground in the Fermilab
Soudan Mine in Minnesota to search for I
evidence of oscillations

# Extrapolate Near Spectrum to the Far
Detector to minimize uncertainties due to:

@ Cross section, flux, event detection and

selection
Fermilab
/ ]10 ren Soudan
T i~
735.340 km —-
12 km
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NuMI (Neutrinos at the Main Injector) Beam

. Muon Monitors
T t Hall Decay Pipe
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Protons are guided towards a graphite target producing a stream of mesons

2 magnetic horns are optimized to focus positively charged particles whose
subsequent decays produce neutrinos
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NuMI Beam Composition

@ The resulting neutrino
energy spectrum can be
modified by adjusting the
relative position of the target
and the horns

@ The default configuration is
“Low Energy” which
optimizes our L/E for the
atmospheric mass-squared

B - r T T T T T ' ! ! | ! ' ! -
- MINOS Preliminary « Low energy beam |
Near Detector

2500 - o o High energy beam _ 5000

—— Tuned MC .
] 4000
1 — Untuned MC

—3000

—2000

—1000

Events in low energy beam/GeV/10'°POT

10d,,01/pe0/weeq ABiaue ubly ul sjusal

Sp| Itti ng Heconstructec? Eeutrino enLSrgy [GeV] 20
@ CC interactions in the Near Detector are:
o+ 92% VILL
a2 % V—u

2 1% v+v_
c c
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2 Detector Experiment

@ Functionally identical tracking calorimeters with
alternating layers of steel and scintillator

# 2.54cm thick magnetized steel planes: Scintillator

@<B>=12T
@ Muon Charge & Momentum Measurements

Orthogonal strips

Steel

| A/ iy i 1 1 1 1 % Iy &1 3§ 1 1 11}

# 1cm thick scintillator planes

@ Segmented into 4.1cm wide strips -
@ Alternating planes rotated by 90° MJ F
# Reconstruct 3D position ' i o opcal

1.0 cm x 4.1 cm extruded polystyrene scindllator

# Sample Frequency: 1.4 radiation lengths
# 1 GeV/c muon travels ~20 planes

# Light transported through wavelength shifting and clear
fibers

# Signal read out through mutil-anode Hamamatsu PMTs
@ Some differences due to flux considerations

# Number of interactions per beam spill
# Detector Size: 1kton (Near) vs 5.4kton (Far)
# M64 (Near) vs M16 (Far) PMT yr———
2 Multiplexing (Far)
4

Single Ended readout in Near Objects not to scale
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Event Topologies

v, CC Event NC Event v, CC Event

- VvV Vv
vl e L

Hadrons Hadrons Hadrons

Long muon track & Short event
hadronic activity at Often diffuse E“C,:Ic)sr::gsvc:re‘;/reor;itle
vertex
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Data Samples

Total Protons on NuMI Target

> 2008 CC publication (3.36¢20)
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v, Charged Current Disappearance
with 3.36 x 102 POT

Measurements of sin*(26,,), [Am?_|

Published: Phys. Rev. Lett. 101 131802 (2008)




& Looking for a deficit of v, events in the Far Detector

v, CC Disappearance — The Purpose

@ Precision measurements of atmospheric Am? and sin?(20)
4 Test the neutrino oscillation hypothesis

sin” 28

P(VU - Vu)zl'

V, Spectrum

Monte Carlo

Unoscillated

2 4 88
Visible energy (GeV)

sin

2%1.2% m’L

Oscillated/unoscillated

© © © o

)
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E , L=735km

Spectrum Ratio

Monte Carlo

10
Visible energy (GeV)




v, CC Disappearance — The Selection

2 quC-Iike events are selected with a nearest neighbors
(KNN) based algorithm with four inputs based on hits
belonging to the track:

2 Track length (planes)

2 Mean pulse height/plane
2 Fluctuation in pulse height
# Transverse track profile

MINOS Preliminary

T C T T T
'5 5 Low Energy Beam ol -2 —]
o 10 — ©
© —e— data £ i ]
o . g 08 [ 7
— === MC expectation © B
PEERT == NC background & -
£ 3 8 0.6 [ ~
2 | s
10k > 04 B Near Detector N
= S i CC selection eficiency
. g B — NC contamination ]
1 L 4 5] 0.2 B ]
O 5 ]
. L 1 1 1 ] 1 1 1 | 1 1 O — MlNOS Pl'e|lmll‘"lary ]
0 0.2 0.4 0.6 0.8 1 0 —l_'—‘— L . e ————
0 2 4 6 8 10

cc/nc separation parameter
Reconstructed neutrino energy [GeV]
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v, CC Disappearance — Near to Far Extrapolation

_|_
Target T
>

P
Decay Pipe >

ND
@ The observed Near spectrum is extrapolated to the Far Detector

# Use Monte Carlo to provide corrections due to energy smearing
and acceptance

# Encode pion decay kinematics & angular acceptance into a matrix
used to transform the ND spectrum into the FD energy spectrum
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Near Detector Neutrino Energy (GeV) Uncertainties on flux and cross section largely cancel
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v, CC Disappearance — Systematic Uncertainties

@ The impact of different sources of systematic uncertainty are
evaluated by fitting modified MC in place of the data

— olo——mm——— .
> | -
O - ]
'O 0.051 ] Relative normalisation
*— | -| == NC background
\\—f - \ ] Overall hadronic energy
~—~ 0.00H : — Relative hadronic energy
NE B \ ] Track energy
< B i Beam
"05’ -0.05H — Cross sections
N | ]
01050001 0 o001 002

3(sin“(20))
@ The 3 largest sources of uncertainty are included as nuisance
parameters in the oscillation fit

# Far/Near Normalization (4%)
# Absolute Hadronic Energy Scale (10.3%)
# NC Contamination (50%)
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v, CC Disappearance — Oscillation Results

@ Far Data consistent with two-flavor

2
Py, - v, )=1- sin” 20 sinzﬁm—mLH

Reconstructed neutrino energy (GeV)

—r——r— 0SCillations with xNDF = 90/97
1508 J MINOS FarDetector | @ |Am?Z,,| = 2.43+0.13x10%eV2  (68% C.L.)
— i * Far detector data 3 sin2(2923)>0_90 (90% CL)
% 100; 17— Nooscilations ) Note results are constrained to physical region
O —— Best oscillation fit - Sin?(20,,)<1
1) I ] -%- [ NC background | 4-O:I T
s I - 3 :
Lﬁ 50 - . 35: :
I | L 5 g
o 3.0 B
(ap n |
il | | | | = -
% 5 10 15 203050 x 29
T
e
<

2.0F

. . B ® MINOS Best Fit Super-K 90% |
@ The resulting contour includes  1.5) — wnossox  — superk L s0%
the 3 largest systematic pLuTmose e
uncertainties 06 07 08 09 1
sin“(20)
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v, CC Disappearance — Alternative Models

o MINOS data
Best oscillation fit
Best decay fit

0.5t

Ratio to no oscillations

Best decoherence fit |

O_....Il...I...lI....I.I.I|
0 5 10 15 20 30 50

Reconstructed neutrino energy (GeV)
@ Decay Model @ Decoherence Model
s P, =[sin0 +cos’0exp(~a L2 ) 5 p =S 20 (1—exp L
V. Barger et al., PRL82:2640(1999) G.L. Fogli et al., PRD67:093006 (2003)
# x?/ndof = 104/97 # x?/ndof = 123/97
4 Ax?= 14 w.r.t. oscillation model # Ax?2= 33 w.r.t. oscillation model
& disfavored at 3.70 & disfavored at 5.7¢0
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v Charged Current Disappearance
with 3.2 x 10 POT

Measurements of sm2(29 2); IAm2,

To be submitted
Presented at FNAL Wine & Cheese 4 weeks ago

ol




"_u CC Disappearance — The Purpose & Selection

@ Looking for a deficit ofﬁevents in the Far Detector
# Test if antineutrino oscillations are identical to neutrino oscillations
@ Similar to previous v, analysis but we select positively charged tracks

@ There are differences though
# Flux is different (je production in the decay pipe walls is significant)
@ v CC events are only 7% of the beam

# Hence charge misidentified muon and NC backgrounds are relatively larger

# Developed extra cuts:

@ Likelihood based on track length, pulse height in track, pulse height in plane
@ Charge sign significance of the track fit

@ Relative angle: Does the track bend towards or away from the coil?
L

0.8;

Monte Carlo
Far Detector

—— ¥, Efficiency

0.6

0.4
[ - Contamination
MIMNOS Preliminary

Efficiency, Contamination

0.2"

% "5 10 15 20 30 40 50
v, Energy (GeV)
Results from the MINOS Experiment —— Gregory Pawloski




"_u CC Disappearance — Oscillation Results

400

MINOS Preliminary
3.2x 10%° POT

Far Prediction (no oscillations): 64.6 +8(stat) +3.9(sys)
Far Prediction (CPT conserving):58.3 +7.6(stat)+3.6(sys) 200t
Far Data: 42 events

] - — 90%
f Low Energy Beam | tTE 4: — 99.7%

Far Detector - —— 90% Va

3.2x10%” POT 1 o :

""" 90% Global Fit * g
7 99.7% Global Fit™, .|
A MINOS Best Fit
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-
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Reconstructed v, Energy (GeV) sin®(26)
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Neutral Current Disappearance
with 3.18 x 102 POT

Search for sterile neutrinos

Update to PRL [Phys. Rev. Lett. 101 221804 (2008)]
To be submitted to PRD

Christopher Backhouse will cover this analysis during
Session 7 tomorrow afternoon



NC Analysis — Near Spectrum

@ |dentify NC interactions by selecting showers with no muons

2 See Backhouse's talk for more details

40— MINOS Preliminary

. Near Detector Data

Monte Carlo Expectation |

v, CC Background

N
o
T G

10 Events/GeV

Py . . L ) PR ) I — . 3
OO 5 10 15 20
EI’ECO (GeV)

@ Extrapolate the selected Near spectrum to the Far in bins of visible
energy

@ Far Detector prediction depends on oscillation parameters
# CC parameters set to values measured by the CC analysis
# v_CC events will be a background to the NC selected events

@ Consider 2 values of 0.,: 0 and the CHOOZ limit
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NC Analysis — Far Results

@ Far spectrum is consistent with no deficit in the NC rate
—MINOS Preliminary

60 —+— Far Detector Data —
013=0°
> — o] -
O 4 0,,=12° =32 |
g - [ ] v. CC Background
= | | AmZ, | = 2.43x107 eV? I
~ 20f T sin’20,, = 1 a
O_ |

PR T SR T R K S
0 5 10
EI’ECO (GeV)

@ Can measure probability to remain active v

Data - Bkg Without v_ appearance: R =1.04 +0.08(stat) +0.07(sys)
Signal With v_appearance: R =0.94 +0.08(stat) +0.07(sys)

R

@ See Backhouse's talk to learn how fits to the spectrum can be
interpreted within the context of a physical model
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v_. CC Appearance Analysis
with 3.14 x 102 POT

Limits on 6.,
To be submitted to PRL




v. CC Appearance — Purpose and Selection

Searching for subdominant v — v, oscillations

P(v —v) = sin*(0,,)sin*(20,,)sin*(1.27Am’L/E) + ...

Constraining 0,, by looking for an excess

of v -like events at the Far Detector 2000 Near Detector MINOS PRELIMINARY
. . > ! T b b o
Select electromagnetic shower topologies _° Nobata
with neural network - — Horn OW/OffNC -
-~ = Horn On/Off v, CC -
Background: 55 20001 F beamy.GC
# 1Us generated via NC or deep-inelastic :; |,
v,-CC interactions b : !
# 1in FD from oscillations %1000_‘ : B
# Non-oscillation beam v, E _|_|—I— .
> :
Measure background rate at Near u - S e ==L
0 2 4 6 8
Extrapolate to Far by component Reconstructed Energy (GeV)
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v_CC Appearance — Background Composition

Note background components 5 NearDetectorMC__MINOS PRELIMINARY
extrapolate differently 2, 5000~ T T
# NC interaction unaffected by X 4000- — vomofime
oscillations %3000-
# CC interactions are affected S 2000, ;
£1000 g

& .

T30 30 40

@ Need to know background |
rino Energy (GeV)

components

@ Horn-on and Horn-off beam

co&f(i:g (L;J rations have different DS PRELMNARY oot preLunary
N ratIOS . I Horn On Monte Carlo | £ HorRNN SMe?::?edarloj
‘g__zooo ::C cc . ?’: :::‘ ::c ce
@ Yields system of linear 3 | B 3 w0
equations to solve for =) gl
background components - : A
W % 2 4 6 8 w9 2 4 6 8

Reconstructed Energy (GeV) Reconstructed Energy (GeV)
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v_CC Appearance — Results

Far Detector MINOS PRELIMINARY 20 Far Detector MINOS PRELIMINARY
— 30—' Preselection | ‘ Seieciéd I '6 e ‘Al‘*lNS‘ele‘cled‘ S
o —Prediction — o —=—Data
Dn' - ~Data ] c“b
@ Far Background: 27+5(stat)+2(sys) % w Jf { 1%
@ Far Data: 35 events s | J[ J[ | g
10— - o
@ 1.50 excess above background £ | | 2
AI';IN Reconstructed Energy (GeV)
Feldman-Cousins C.L. contours for ANN
T ‘." | | | | | | | | ]
o ) 3.14x10” POT
@ Set limits based on total number of _ sin2(20,) =1.0
events using Feldman-Cousins 1.5}- A m,l =2.43x10° eV2
method I m— Best FItA M2 50 _|
. =ssz Best FltA m? <0 -
@ BestFitand 90% C.L. contours are o — 0% CLAM>0 T
shown for both hierarchies o TS oLAmeD
# Assume MINOS best fit values -
for Am?,, and sin*(26,,) 0.5 -
2 Best fit at CHOO/Z limit ]
| :.l | | | | | | |
% 0.2 0.4 0.6

. 9 PRELIMINARY
sin“(20,,)
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v_CC Appearance — Future Prospects

Potential 90% C.L. Contours for 7.0x10%° POT

Potential Feldman-Cousins C.L. contours for ANN Potential Feldman-Cousins C.L. contours for ANN
El T T T T T T T I T T I T T T T
i 3 7.0010” POT | B 7.0x10*° POT  _
. sin’(28,) = 1.0 | . sin*(20,) =1.0 |
1.5 1A m3,) =2.43x10 eV 1.5 la m3,) = 2.43x10 eV
—— Best Fit A M >0 _| B i
I'.G& 1— ""thl-‘:tim’:ﬂ— @% 1 = 090% CLA M =0 _|
==90%CLAM >0 ] i —90% CLAM <0 |
—00% CLAMF<0 B i
- = CHOOZ 90% CL L == CHOOZ 90% CL |
0.5 s 0.5F ) .
B . H 0 L L Y /N VA B
% 0.2 0.4 0.6 % 0.1 0.2 03
_ PRELIMINARY _ PRELIMINARY
sin®(26,,) sin®(26,,)
If excess remains with more data If excess goes away with more data

Blind analysis ongoing
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Closing Remarks

@ MINOS has analyzed 3x10%° POT of beam data
2 More than 7x10%° POT has been recorded for ongoing analyses

@ Precision v, CC disappearance measurement
2 |Am2,,| = 2.43+0.13x10%eV? (68% C.L.)
2 sin%(26,,)>0.90 (90% C.L.)
@ v, CC disappearance measurement excludes previously allowed

regions of CPT violating phase space
# Plan to have a dedicated antineutrino run starting this September

@ Updated sterile neutrino search
# See Backhouse's presentation to get the details

@ 1.50 excess in v, appearance channel
2 Interesting prospects for the analysis of 7x10%° POT of beam data
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